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Tuning vs. Optimization



● Combatting the ego problem of LLMs
○ “Opt-out” confidence prompting
○ Uncertainty thresholding
○ Active prompting

● Test-Driven Development (TDD)
○ Continuous prompt improvement
○ Limitations

● Output optimization: Three approaches
○ Self-evaluation (Reflexion)
○ Suitability scoring
○ Agents for executable output

Prompt optimization: Principles for success



The ego problem of LLMs

https://www.rungalileo.io/hallucinationindex

https://www.rungalileo.io/hallucinationindex


“Opt-out” confidence 
thresholding

● Implicit approach: LLM self-confidence 
evaluation assigns human support, general LLM, 
or a user-friendly “I don’t know” message as a 
prompt response “out”

● Explicit approach: Rule-based threshold 
through self-consistency

○ Uncertainty: Proportion of answers that are 
unique

○ Token likelihood: Likelihood of an LLM 
output (cumulative token probability)

Persona introduction

Capability articulation

Definition of scope

Placeholder for 
multi-shot

Output specification 
with “opt-out”



Optimizing prompt accuracy: Self-consistency
Improve the consistency of an existing LLM system without altering its architecture

Chain-of-thought 
prompting

Self-consistency
Sample a diverse set of reasoning paths Marginalize out reasoning 

paths to aggregate final 
answers

Prompt

“I'm flying from 
BNA to ATL.

If I need to land 
by 1PM local 
time, by what 

time should my 
flight leave?”

You are a calculator. 
Take the 
computational 
process step by step.

Q: I have a flight from MSP 
to MIA departing at 9AM 
local time. What’s my 
expected arrival time?

A: Start with the expected 
flight time: 3 hours and 30 
minutes. Add the flight time 
to the departure time: 9AM + 
3 hours + 30 minutes = 
12:30PM. Account for any 
time zone changes: 12:30PM 
+ 1 hour = 1:30PM.
…

LLM

LLM

If you need to land by 1 PM, you should 
consider the following: 1:00 PM (desired 
arrival time) - 1 hour (flight time) = 12:00 PM. 
… So: 12:00 PM - 30 minutes = 11:30 AM

The answer is 11:30AM

The answer is 11:00AM

The flight from Nashville (BNA) to Atlanta 
(ATL) typically takes around 1 hour [...] you 
would need to depart from Nashville no later 
than 11 AM CST to account for the 1-hour 
flight time.

To answer this question, we need to 
consider two main factors: the flight duration 
and the time difference between the two 
locations [...] you should aim to take off from 
Nashville at least 1 hour before, so around 
12PM local time.

1. Flight Duration: The average flight duration 
from BNA to ATL is approximately 1 hour […] 
aim for a flight that leaves around 11AM 
local time from BNA to ensure you land in 
ATL by 1PM.



Uncertainty thresholding with self-consistency
Self-consistency

Chain-of-Thought 
Prompt 

(“Step-by-Step”)

You are a calculator. 
Take the 
computational 
process step by step.

Q: I have a flight from MSP to 
MIA departing at 9AM local 
time. What’s my expected 
arrival time?

A: Start with the expected 
flight time: 3 hours and 30 
minutes. Add the flight time to 
the departure time: 9AM + 3 
hours + 30 minutes = 
12:30PM. Account for any 
time zone changes: 12:30PM 
+ 1 hour = 1:30PM.
…

LLM

The answer is 11:00AM

[...] 11 AM CST [...]

[...] 12:30 PM CST  [...]

[...] 11AM local time [...]

[...] 12PM local time [...]

Diversified 
Reasoning Paths 

(Self-Consistency)

[...] 11AM CST [...]

Uncertainty 
Threshold 

Application

Unique Output 
Proportion < 0.5?

Reasoning Path 
Selection

General LLM

I don’t know. Human Support

User-Friendly Message



Active prompting with uncertainty thresholding

Top-N most uncertain 
shots

Diverse answers (CoT + 
self-consistency)

Uncertainty threshold 
application

Sample of prospective new 
shots (Automated or 
human-engineered)

Add to shot set (LLM 
context)

Shot set evaluation (Token 
constraints, bias-variance, 

completeness, etc.)



TDD: Benefits and limitations



TDD embraces 4 LLM ground truths:

● Output is unpredictable and ambiguous

● Tasks quickly grow complex as we scale

● Reduced risk translates to user confidence

● Continuous improvement and performance 

measurement ensure market relevance

Test-Driven Development (TDD)



Test-driven LLM optimization is tiresome, 
extensive, noisy, and not conducive to scale

Production-grade solutions require modular 
features, not a monolithic “fail fast” framework:

● Model hypersensitivity

● Proliferated interaction styles

● Exhaustive error handling

● Context = Potential noise

TDD is not enough



Three approaches to
LLM output optimization

Reflexion, suitability scoring, and agent systems



● For use cases with a ground truth that is out of reach: a feedback loop that iteratively approaches 

high-confidence outputs

a. Correction of errors, especially for multi-step reasoning or code generation tasks

b. Improvement of output quality, especially for requirement satisfaction

c. Boost in contextual understanding through evaluation of interpretations

● Two core approaches:

a. Feedback-Driven Reflexion: Iterative changes via self-assessment are triggered by negative user 

feedback (👍/ 👎 feature for chat-style interfaces, etc.)

b. Implicit Reflexion: Self-assessment is applied on all requests before initial front-end delivery

Self-evaluation: Reflexion

https://promptengineering.org/reflexion-an-iterative-approach-to-llm-problem-solving/

https://promptengineering.org/reflexion-an-iterative-approach-to-llm-problem-solving/


Feedback-driven reflexion

Response was labeled poor (General)

My flight has been delayed. Where can I go for more information on my flight’s status?

Feedback-Driven 
Self-Reflection Layer

I’m sorry to hear that! For more information on your delayed flight, please consider consulting one of the following resources:

1. Airport Website: Please visit our Flight Status page for real-time information about flight status, delays, and any changes to the schedule.

2. Airline Kiosk: Ask an airport representative for updated flight details before entering a security checkpoint

3. Airport Information Screens: Your airport will display real-time flight information on departure and arrival screens located throughout the 
terminals.

I’m sorry to hear that! For more details on your flight, please visit our Flight Status page.

Response was labeled incomplete (Specific)

Please modify the relevance of your previous 
response to the customer’s request for 

up-to-date flight status information. Offer a 
more specific and helpful solution.

Please modify the [completeness, accuracy, helpfulness, 
specificity] of your previous response to the customer’s request 

for up-to-date flight status information. Offer a more 
[complete, accurate, helpful, specific] solutions.



Implicit reflexion
My flight has been delayed. Where can I go for more information on my flight’s status?

Hidden Self-Reflection 
Layer

I’m sorry to hear that! For more information on your delayed flight, please consider consulting one of the following resources:

1. Airport Website: Please visit our Flight Status page for real-time information about flight status, delays, and any changes to the schedule.

2. Airline Kiosk: Ask an airport representative for updated flight details before entering a security checkpoint

3. Airport Information Screens: Your airport will display real-time flight information on departure and arrival screens located throughout the 
terminals.

I’m sorry to hear that! For more details on your flight, please visit our Flight Status page.

Evaluate the relevance of your previous 
response to the customer's issue of intermittent 
internet connection. Offer a more specific and 

helpful solution if necessary.



LLM “Meta-Prompt”

Prompt optimization: Suitability scoring

Suitability score 
ranking

Generated prompt options
Objective function evaluator
(Human or suitability LLM)

Option-score pairs Task description
Optimizer LLMOptimized prompt

https://arxiv.org/abs/2309.03409

Keys to success:

● Clearly identify a working definition of “done”:

○ Number of iterations requirement met? Suitability threshold satisfied? Human exit trigger?

● Evaluate scale of use and the cost / performance tradeoff when deciding on human-in-the-loop interactions

● Be very selective with the optimizer LLM’s randomness hyperparameters!

https://arxiv.org/abs/2309.03409


An agent system implements a set of reasoning steps that warrant decision-making across multiple eligible actions

Agent-based approaches: Overview

Reasoning → Identification:

- Which data sources or applications are relevant?

- Which type of task is required?

- Where should the output of this task be delivered next?

Identification → Action:

- What functions are needed?

- Should this task be considered “complete”?

- How will the functions work together to satisfy each 
identified task requirement?

In general, three primary agent capabilities are used today:

- Code interpreters

- Multi-source retrievers

- Function callers

A solution architecture leveraging multiple agents: a multi-agent system (MAS)



Base “Meta-Prompt”

Simple agent approach to executable output

Task Description Dataset Metadata Shot Set

ActionCode Interpreter Agent Loaded Resources

ReasoningDoes this code satisfy the user request?

ActionReturn to Zero-Context Code Execution

Failure Desired Object Output

Action

Loaded Resources

Code Debugger LLM
Debugger LLM Prompt

Successful Block Failed Block

Prior Next Block(s) Attempts Traceback



Overview of accuracy and feedback 
Evals & LLM monitoring



The LLM alignment problem

The problem: LLM outputs are by nature unpredictable

● Engineers do not know exactly what LLMs will output from a given input

● LLMs often “learn” unintended things from data

● LLMs sometimes do no “learn” what we want to teach them

● LLMs need to be predictable for business uses

The goal: Align LLMs to business’ values

https://www.google.com/url?sa=i&url=https%3A%2F%2Fthegradientpub.substack.
com%2Fp%2Fupdate-49-fundamental-limitations&psig=AOvVaw1Vpew7M_Osx2w
NEu9OWlfq&ust=1707846008284000&source=images&cd=vfe&opi=89978449&ved
=0CBMQjRxqFwoTCIjM36qspoQDFQAAAAAdAAAAABAD

https://www.google.com/url?sa=i&url=https%3A%2F%2Fthegradientpub.substack.com%2Fp%2Fupdate-49-fundamental-limitations&psig=AOvVaw1Vpew7M_Osx2wNEu9OWlfq&ust=1707846008284000&source=images&cd=vfe&opi=89978449&ved=0CBMQjRxqFwoTCIjM36qspoQDFQAAAAAdAAAAABAD
https://www.google.com/url?sa=i&url=https%3A%2F%2Fthegradientpub.substack.com%2Fp%2Fupdate-49-fundamental-limitations&psig=AOvVaw1Vpew7M_Osx2wNEu9OWlfq&ust=1707846008284000&source=images&cd=vfe&opi=89978449&ved=0CBMQjRxqFwoTCIjM36qspoQDFQAAAAAdAAAAABAD
https://www.google.com/url?sa=i&url=https%3A%2F%2Fthegradientpub.substack.com%2Fp%2Fupdate-49-fundamental-limitations&psig=AOvVaw1Vpew7M_Osx2wNEu9OWlfq&ust=1707846008284000&source=images&cd=vfe&opi=89978449&ved=0CBMQjRxqFwoTCIjM36qspoQDFQAAAAAdAAAAABAD
https://www.google.com/url?sa=i&url=https%3A%2F%2Fthegradientpub.substack.com%2Fp%2Fupdate-49-fundamental-limitations&psig=AOvVaw1Vpew7M_Osx2wNEu9OWlfq&ust=1707846008284000&source=images&cd=vfe&opi=89978449&ved=0CBMQjRxqFwoTCIjM36qspoQDFQAAAAAdAAAAABAD


Misaligned LLM examples

https://www.lakera.ai/blog/guide-to-hallucinations-in-large-language-models

Factual hallucinations

Instructional inconsistency



Alignment problem approaches

Three alignment approaches often used together:

● LLM evaluation: Values-based adversarial training with humans in the loop

● LLM guardrails: Rule-set-based input and output sanitization

● Retrieval Augmented Generation: Adding context to LLM's by integrating retrieval systems.



Identify evaluation goals

Select evaluation metrics

1.

2.

Gather and process evaluation data3.

Develop evaluation models4.

Deploy and iterate5.

LLM 
evaluation



Identify   
evaluation goals

Rule of thumb

One value = One word

Ex. Succinct, trustworthy, 
relevant, polite

Ex. A summarization use-case 
would value succinctness

Determine the core values you want to evaluate

● Values are based on use-case

● Limit the number of values when possible

● Values should be as specific as possible



Select     
evaluation metrics

Rule of thumb

All good metrics are quantitative, 
reliable, and accurate

Good metrics + Accurate Values = 
Good Alignment

Objective Metrics: Directly computable or check-able

● Does your output always have a single correct response?

● Can the output validity be determined numerically or by 
referencing a ground-truth source?

● Good metrics are accuracy, precision, recall, and F1 score

● Ex. Precision and recall of flight numbers, dates, code, lyrics

Subjective Metrics: Opinion-based, by consensus

● Is your value based in human judgement?

● Evaluating requires an eval LLM

● Only use subjective metrics where absolutely necessary

● Ex. % relevant, meaningfulness score, writing quality score



Gather and process 
evaluation data

Rule of thumb

Build a “Golden dataset” of 
everything you expect your 
LLM to see

Golden dataset

● Very important! This is make or break for alignment (if used)

● Provide only examples of the intended use-case

● Make 50-100+ examples labeled based on values (ex. relevant or irrelevant)

● Not used for zero-shot evaluation

Production data vs. Synthetic sets

● Production data is king, but limited- even 1% of total is a boon

● Additional synthetic data can be made from production examples

● Synthetic data tools: Langchain QA generation chain, llama-index, ragas

https://amagastya.medium.com/decoding-llm-performance-a-guide-to-evaluating-llm-applications-e8d7939cafce



Develop 
evaluation models

Rule of thumb 

Build AI to evaluate AI!

https://www.confident-ai.com/blog/llm-evaluation-metrics-everything-you-need-for-llm-evaluation

● Many good evaluation models exist- try them before making your own!

○ Ex. Prometheus, GPTScore, SelfCheckGPT, etc.

● Create evaluation prompt(s) from value(s)

○ Ex. Relevance value->”Is the context relevant?”

● Generate classifications from a 2nd “eval” LLM using the prompt and output 
from 1st “evaluatee” LLM

● Compute metric from resulting labels



Customizing 
evaluation LLM

Main customization approaches 

● Zero shot 

● Few shot

● Fine tuning

Zero shot: Directly use base model to generate eval classifications

● GPT-4 and LLAMA 2 work well

Few shot: Use base model with “Golden dataset” as context

Fine tuning: Use “Golden dataset” to tune a base model

● “Golden dataset” is typically much larger and includes synthetic data

● A continuous RLHF approach is often used in production with live 
“evaluatee” LLM outputs



Deploy and   
iterate

Rule of thumb

Think of evaluation as a 
continuous process that you 
need to periodically revisit not 
a one time test.

Continuous evaluation is necessary for all LLM business applications

● “Eval” LLM tuning should accompany “evaluatee” tuning

● Values and metrics should be periodically reassessed for use-case fit

Evaluation LLMs are often require several iterations to properly align

● Rigorously vet “Golden dataset” for use-case fit

● Try different “Eval” LLM base models

● Determine if metric reflects your true value or if it reflects a proxy value

● Try another customization method

● Vary the wording in your evaluation prompt



Eval prompt         
tuning

Tip #1

Clarity and specificity

Make your prompts as clear and 

specific as possible. Clearly outline 

your value(s) and the classifications you 

want the model to generate. If your 

prompt is vague, the model might 

generate ambiguous or incorrect 

responses.



Eval prompt         
tuning

Tip #2

Experiment with 
different phrasing

Try different variations of prompts        

to see which one elicits the best 

response. Sometimes, using value 

synonyms can lead to more accurate or 

relevant outputs.



Eval prompt         
tuning

Tip #3

Use instructions

Include explicit instructions in your 

prompts to guide the model's behavior. 

For evals, you can specify the classes 

you want, ask the model to explain its 

reasoning, or request it to consider it is 

evaluating another LLM before 

providing an answer. 



Eval prompt         
tuning

Tip #4

Adjust temperature 
and max tokens

Temperature and max tokens are 

parameters that can be adjusted to 

influence the randomness and length of 

the generated output. Experiment with 

different values for these parameters to 

achieve the desired level of precision 

and recall in the model's responses. 



Synthetic generation
Data / GANs / Shots



Response completeness: LLM-generated diverse data
Generating synthetic data for information retrieval (RAG) tasks:

In the generate step,
two choices for a RAG system:

1. Fully automated RAG optimization: 

● First LLM: Generate hypothetical positive pairs of sample user requests and isolated, relevant document “chunks.”

● Second LLM: A suitability evaluator on the query-document execution, i.e. “How well did the response answer 
your question?”

2. Manual annotation for few-shot prompt components:

● First LLM: Random sampling across manually annotated components to ensure embedding positivity



Response completeness: Building a shot set

Approval

Thresholding

N = Targeted

A = Approved

For instance, 
with an LLM:

Carriers
Delta
United
Southwest
American
[…]

DEP / ARR
LAX
ORD
LGA
ATL
[…]

Seat Class
Basic Economy
Economy
Main Cabin
Comfort
[…]

Car Rental
AVIS
Budget
Enterprise
Hertz
[…] [...]

[...]

Set Batch Size = N-A Diverse Shot Creation Human-in-the-Loop

Suitability Evaluation LLM

Discard

Discard

Shot Set (+A)

“Compose a trip itinerary for a 
{random.choice(carriers)} Airlines flight from 
{dep_arr_choices[0]} to {dep_arr_choices[1]} in the 
{random.choice(seat_classes)} class, with a rental 
car provided by {random.choice(car_services)} upon 
my arrival [...]”



GANs are adversarial networks made of two parts:

● Generator: model responsible for generating realistic samples

● Discriminator: classifier to distinguish real samples (in the original dataset) from fake ones 
(from the Generator model)

The Generator and Discriminator are trained with alternative training in one loop using a mini-batch 
of input data until the model converges

https://medium.com/data-science-at-microsoft/synthetic-data-generation-using-generative-adversarial-netwo
rks-gans-part-2-9a078741d3ce

Generative Adversarial Networks (GANs)



Other Synthetic Data Approaches

● Masked Data Modeling: mask a certain percentage of words in a each sentence and have 
an LLM predict those masked words

● GPT-4 Based Generation: directly prompt a general purpose LLM to generate data

● Seq2Seq: encoder-decoder architecture, where the encoder processes the input sequence 
and the decoder generates the output sequence

● Rule-Based Generation: designing your own rules and patterns to generate text



RLHF
feedback analysis



Optimizing LLM solutions for domain users

Concept mappings: “When I say frequent flyer program, I really mean FFP”

Table descriptions: “This table contains boarding pass information for each passenger on upcoming flights, including…”

User-level Reinforcement Learning through Human Feedback (RLHF): 

● Implicit feedback: Conversation history, thread history, real-time learning systems like CoPilot, etc.

● Explicit feedback: 👍/ 👎 feature for chat-style interfaces, hallucination type labels (unhelpful, inaccurate, incomplete, etc.)

Prompt LLM System

 HF Store

Response

Label Applied



RLHF with Superwise

https://docs.google.com/file/d/1NQlSQx7pHuvcOyA530Z5YUriAWKkBrT5/preview


Advanced RAG
optimization techniques



https://towardsdatascience.com/why-your-rag-is-not-reliable-in-a-production-environment-9e6a73b3eddb#:~:text=2%20%E2%80%94%20RAG%20systems%20lack%
20basic,refusing%20to%20answer%20simple%20questions.

RAG systems: Review

https://towardsdatascience.com/why-your-rag-is-not-reliable-in-a-production-environment-9e6a73b3eddb#:~:text=2%20%E2%80%94%20RAG%20systems%20lack%20basic,refusing%20to%20answer%20simple%20questions.
https://towardsdatascience.com/why-your-rag-is-not-reliable-in-a-production-environment-9e6a73b3eddb#:~:text=2%20%E2%80%94%20RAG%20systems%20lack%20basic,refusing%20to%20answer%20simple%20questions.


https://medium.com/@kelvin.lu.au/disadvantages-of-rag-5024692f2c53

● Semantic similarity search can be highly sensitive to plurality and 

insensitive to polarity

● Hyperparameter tuning for topic-based chunking and document 

density is expensive

● Multi-step retrieval / QA necessitates a complex framework

● Corpora with contextually significant formatting: retrieval is very lossy 

by default

RAG is not enough!

How can we boost the consistent performance of these systems

without tarnishing latency, cost efficiency, and the overall UX?

https://medium.com/@kelvin.lu.au/disadvantages-of-rag-5024692f2c53


https://medium.com/unstructured-io/rag-isnt-so-easy-why-llm-apps-are-challenging-and-ho
w-unstructured-can-help-8daaf859c615

Unstructured chunking

● Character splitting (size-based): Chunking text into equally 
sized documents based on character length, which may result in:

○ Multiple topics in one chunk

○ One topic in multiple chunks

● Unstructured chunking: Content-aware identification of text 
objects via syntactical rules

● Benefit: Assigning one chunk to each text object produces 
semantically consistent documents of varying lengths

● Drawback: Syntactical similarity + proximity =/= semantic 
similarity in every case

https://medium.com/unstructured-io/rag-isnt-so-easy-why-llm-apps-are-challenging-and-how-unstructured-can-help-8daaf859c615
https://medium.com/unstructured-io/rag-isnt-so-easy-why-llm-apps-are-challenging-and-how-unstructured-can-help-8daaf859c615


https://medium.com/@hadiazouni/text-splitting-chunking-for-rag-applications-7ccbb6dcc9f9

● Leverages sentence-level semantic similarity methods in 
order to order chunk-level content more meaningfully

○ Split documents into sentences

○ Sentence embeddings

○ Cluster semantically similar sentences and 
re-indexing

● Built-in contextual compression minimizes unneeded 
noise sent to the LLM

● Benefit: Semantically tight chunks ensure minimal loss

● Drawback: Contextual richness of the original corpus 
structure is lost

Semantic chunking (Contextual compression)

https://medium.com/@hadiazouni/text-splitting-chunking-for-rag-applications-7ccbb6dcc9f9


https://medium.com/ai-insights-cobet/rag-systems-and-the-power-of-semantic-search-a-simple-guide-b0b03c914e37

● In order to grant structure to unstructured requests, an extraction LLM parses two components:

○ The semantic component

○ Document metadata fields

● With robust preemptive knowledge of corpus content: boosts latency and reduces noise passed to core LLM 

● Drawback: Severely limited in scope of use at the production level, especially for customer-facing solutions                 
(think customer support chatbots)

● Fusion retrieval and other hybrid search methodologies act with similar entry points

Self-querying retrieval

https://medium.com/ai-insights-cobet/rag-systems-and-the-power-of-semantic-search-a-simple-guide-b0b03c914e37


https://pub.towardsai.net/advanced-rag-techniques-an-illustrated-overview-04d193d8fec6

Parent-child relationships (auto-merging)

● Parent Documents: High-level concepts

● Child Documents: Specific details, drill-down 
information

● Both document sets are vectorized and stored 
concurrently 

● Thresholding: i.e. more than n chunks in top k (or 
n%) are members of the same parent

○ “Narrowing the context retrieval window” 
by auto-merging 

● Drawback: Key details in remote chunks will fall 
to the margins if static thresholds serve as 
filtering criteria

https://pub.towardsai.net/advanced-rag-techniques-an-illustrated-overview-04d193d8fec6


https://pub.towardsai.net/advanced-rag-techniques-an-illustrated-overview-04d193d8fec6

Query decomposition (multi-query retrievers)

● Parser LLM: Overall request is segmented into 
sub-queries

○ Processed in parallel, a unique union of top-k 
outcomes is produced

● Benefit: Use cases heavily relying on comparisons, 
time, multiple “big ideas”, etc. grow more accurate

● Drawback: Most decompositions are not clear-cut and 
require a “step-back” query

○ i.e. “Was ChatGPT available during Biden’s 
presidency?” requires “When was ChatGPT 
launched?”

● In most cases, a multi-source agent system is a 
more efficient but less scalable alternative

https://pub.towardsai.net/advanced-rag-techniques-an-illustrated-overview-04d193d8fec6


LLM infrastructure:
Considerations in optimization



https://www.tensorops.ai/post/what-are-quantized-llms

https://medium.com/@abonia/llm-series-quantization-overview-1b37c560946b

● Reducing the size and increasing the speed of an LLM by 
lowering the precision of its weights

○ Hardware reductions come at the cost of scope of use 
and accuracy

● Infinite (continuous) range of model weights mapped to finite 
(discrete) set

○ Decreased number of bits required for each model 
weight reduces overall model size

○ Sub-queries are processed in parallel and a unique 
union of top-k outcomes is produced for the core LLM

● Two types:

○ Post-Training Quantization (PTQ): Lower memory 
consumed, quicker inferences, and efficient energy use

○ Quantization-Aware Training (QAT): Preserved model 
accuracy, computationally intensive training process

LLM quantization

https://www.tensorops.ai/post/what-are-quantized-llms
https://medium.com/@abonia/llm-series-quantization-overview-1b37c560946b


https://neuralmagic.com/blog/sparsegpt-remove-100-billion-parameters-for-free/

https://towardsdatascience.com/model-compression-via-pruning-ac9b730a7c7b

LLM pruning

● ML model pruning: Eliminate the weights with low impact on the 
model’s performance

○ Model architecture can be upheld, but insignificant weights 
are driven to 0

○ A “bit mask” applies a pruning strategy across the weights 
until the targeted sparsity level is achieved

● LLM model pruning: 

○ Structured pruning: Removing entire structural components, 
like neurons, channels or layers.

○ Unstructured pruning: Applying a threshold on individual 
weights and zeroing out parameters below it.

● To improve accuracy after pruning:

○ Parameter-Efficient Fine-Tuning (PEFT)

○ SparseGPT: Apply an approximate sparse (i.e. lassoed) 
regression solver on each layer for ~60% parameter reduction

https://neuralmagic.com/blog/sparsegpt-remove-100-billion-parameters-for-free/
https://towardsdatascience.com/model-compression-via-pruning-ac9b730a7c7b


● Storing past requests and their semantic meaning 
in a cache layer through one of two approaches:

○ Static LLM template: “Has this request 
been made before?”

○ Direct semantic search on embeddings 
with similarity thresholding (i.e. sentence 
transformers)

● Requests are mapped to previously processed 
responses if semantically similar inputs are stored

● Especially beneficial for applications with highly 
limited / repetitive requests or short-form tasks:

○ Reduced latency

○ Scalability via offloaded demand

○ Reduced operational costs by minimizing 
requests sent to computationally intensive 
LLM architectures

https://neuralmagic.com/blog/sparsegpt-remove-100-billion-parameters-for-free/

Semantic caching

New request

New request 
embeddings

Threshold not 
met

Threshold
met

LLM system Similar request

Request 
embedding cache

Semantic
search

https://neuralmagic.com/blog/sparsegpt-remove-100-billion-parameters-for-free/


Most solutions: Flexibility, 
partial participation, and 
choice

https://medium.com/getmodzy/deploy-and-run-llms-at-the-edge-90b8523f6d85

Bringing powerful LLMs to the edge

● Edge computing may serve as the cure-all for the 
common ills of closed-source LLMs:

○ Latency: Instantaneous LLM interactions

○ Offline interfacing: Remote environments and 
zero-transfer engagements

○ Security: Air-gapped solutions for 
high-compliance industries

○ Costs: Process at the point of collection to 
mitigate cloud & compute fees

○ Open-Source compatibility: Highly custom ANI

● Challenges to overcome: 

○ Model management, monitoring, and 
observability across the ecosystem

○ Scalability and up-front infrastructure investments

https://medium.com/getmodzy/deploy-and-run-llms-at-the-edge-90b8523f6d85


https://superwise.ai/blog/ml-vs-llm-is-one-better-than-the-other/

● Augmenting insights and 
enabling foresight

● Greater transparency 
and explainability

● Discriminative tasks with 
static I/O structures

● Limited yet efficient 
in scope

● High specialization 
and bespokeness

● Minimal resource, training, 
data requirements

Traditional ML

ML vs. LLM: Technical considerations

● Automating hindsight, 
mundane “cognitive work”

● Black box masking

● Creative tasks for 
customized output, 
insensitive to input 
cleanliness or modality

● Dynamic multi-step 
processes (ReAct) emerging

● Expensive and extensive 
training required

● Seamless RLHF integrations

LLMs
Artificial

Intelligence

Machine
Learning

Deep
Learning

Computer
Vision

Natural Language 
Processing

Generative AI & 
Large Language 

Models

https://superwise.ai/blog/ml-vs-llm-is-one-better-than-the-other/


What did we
talk about

LLMs are limited

Architectures to utilize for real use cases

○ RAG

○ Orchestration

○ Monitoring

○ Agents

Experimentation is key



Q&A
David Kramer, Lead Innovation Engineer @BlattnerTech   |   david.kramer@blattnertech.com   |   in/david-kramer-b45709167

Oren Razon, Superwise Product Lead and IL GM @BlattnerTech   |   oren.razon@blattnertech.com   |   in/oren-razon/

Andrew Sampson, Machine Learning Engineer @BlattnerTech   |   andrew.sampson@blattnertech.com


