

Emerging architectures for LLM applications

Engineering around limitations

Or Itzary, CTO @Superwise | or.itzary@superwise.ai | linkedin/or-itzary

Gad Benram, Founder & CTO @TensorOps | gad@tensorops.ai | linkedin/gad-benram

Gad Benram

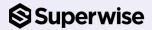
Founder & CTO @TensorOps

About us

Or Itzary CTO @Superwise

Gabriel Gonçalves

Solution architect @TensorOps



Model observability

built for scale

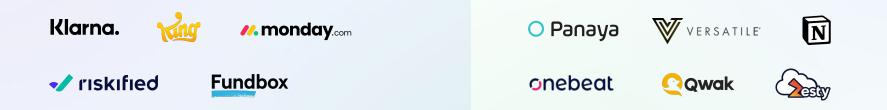
We empower data science, ML engineering, and operational teams with visibility and control to scale Al activities

🔅 tensorops

Your AI Partners

We simply help machines learn

We build end-to-end AI solutions for businesses; Specializing in LLMs, time series forecasting and search.



Agenda

- Limitations of LLM's
- Limitations as engineering challenges
- Building blocks of LLM systems
- LLM evaluation
- LLM monitoring

Reference

Emerging Architectures for LLM Applications

by Matt Bornstein and Rajko Radovanovic

AI, machine & deep learning + enterprise & SaaS + AI + Generative AI + machine learning Large language models are a powerful new primitive for building software. But since they are so new—and behave so differently from normal computing resources—it's not always obvious how to use them.

This talk is inspired by this great article by a16z.

This is not a review (after all you can read it on your own ☺) Let's discuss some of the design patterns that we have observed in our experience with LLMs. andreessen. horowitz

LLMs will take your job first and destroy humanity

Maybe.

But for now let's focus on practical implementations of LLM Applications

Many of the architectures that you will see today are

"ways to get around the limitations of LLMs"

Engineering around the limitations

Limitations of off-the-shelf LLM's

- Only know what they were trained on
- Context size is limited
- Bad scaling with increasing context
- Limited to text perception
- Hard to evaluate results
- Expensive for high volumes of data

What LLM use case are you developing?

Polls/Quizzes

< Back

• • •

What LLM use cases are you investing in?

Poll ended | 1 question | 68 of 109 (62%) participated

1. What LLM use cases are you developing? (Multiple Choice) * 68/68 (100%) answered

ML augmentation (Labelling, segmentation, etc)	(15/68) 22%
Productivity (Code completion, summarization, etc)	(38/68) 56%
Generation (Text generation, image generation, etc)	(37/68) 54%
Conversational (Chatbots, guides, etc)	(41/68) 60%
Knowledge accessibility (Question answering, training, etc)	(43/68) 63%
Other	(12/68) 18%

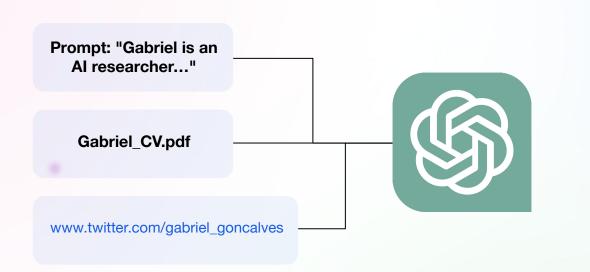
Retrieval Augmented Generation

Lack of knowledge

Context Limitations of LLM's - Lack of Knowledge

- LLM's are unaware of concepts outside of their training set
- Filling gaps in knowledge with assumptions
- Very hard to teach LLM's about new concepts

Lack of knowledge



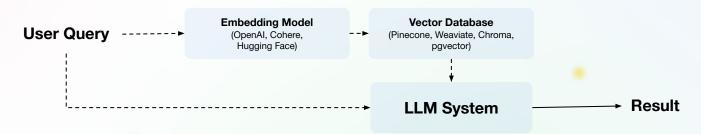
Retrieval Augmented Generation - (RAG)

- Adding context to LLM's by integrating retrieval systems
- Retrieval systems provide short but informative context to LLM's

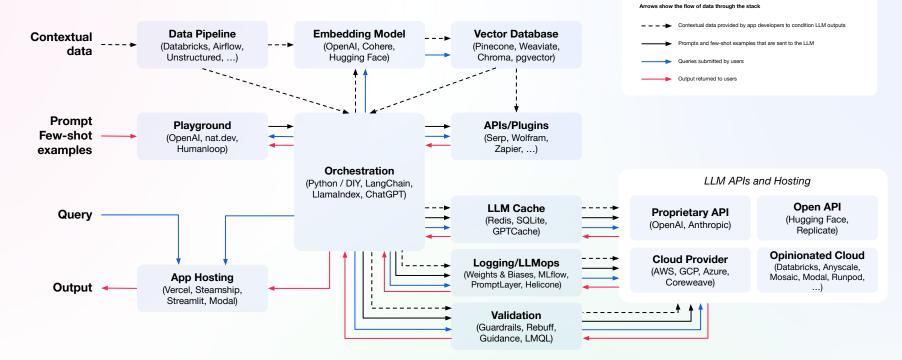
Retrieval Augmented Generation

Use-cases:

- Knowledge Base question answering
 - Library documentation
 - Technical documents
 - \circ Code
- Technical Summarization



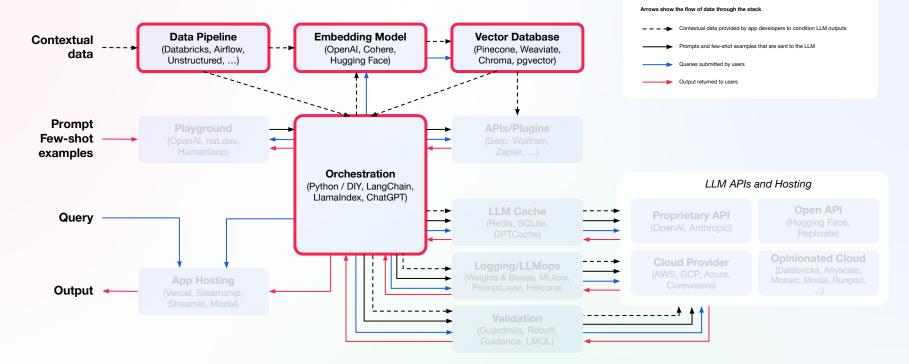
Emerging LLM app stack



LEGEND

Light blue boxes show key components of the stack, with leading tools/system listed

Emerging LLM app stack



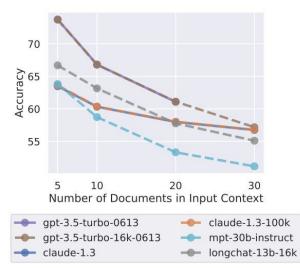
LEGEND

Light blue boxes show key components of the stack, with leading tools/system listed

Context Limitations of LLM's - Performance Scaling

- Performance scales inversely with prompt size
- Happens across many LLM architectures

Model	Context Window (tokens)	
GPT-4	8-32K	
Claude-1	100K	
GPT-3.5	4-16k	



Source: "Lost in the Middle: How Language Models Use Long Contexts", F. Liu et al. 2023.

Context Limitations of LLM's - Bias

• Bias towards first option when choosing things

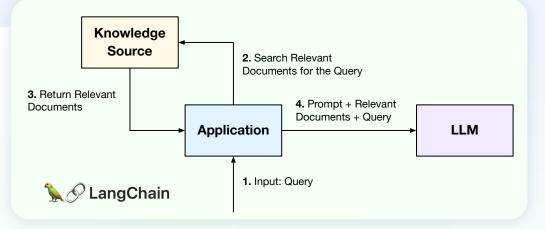
Judge	Prompt	Consistency	Biased toward first	Biased toward second	Error
Claude-v1	default	23.8%	75.0%	0.0%	1.2%
	rename	56.2%	11.2%	28.7%	3.8%
GPT-3.5	default	46.2%	50.0%	1.2%	2.5%
	rename	51.2%	38.8%	6.2%	3.8%
GPT-4	default	65.0%	30.0%	5.0%	0.0%
	rename	66.2%	28.7%	5.0%	0.0%

Source: "Judging LLM-as-a-judge with MT-Bench and Chatbot Arena", Lianmin Zheng et al. 2023.

• Recency bias for most tasks

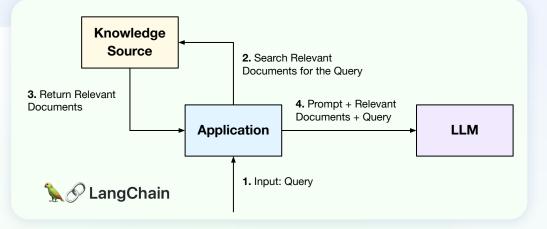
RAG Systems - more components

- Loaders and parsers
- Document preprocessing
- Document storage and indexing
- Retrieval Algorithms

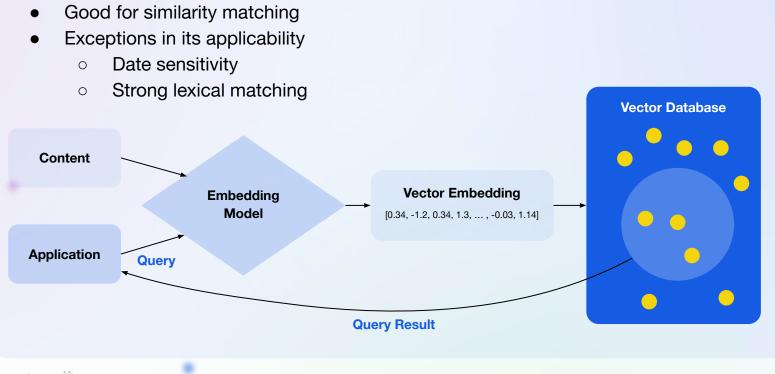


RAG Systems - more components

- Loaders and parsers Unstructured, Airflow, Databricks
- Document preprocessing Airflow, Databricks
- Document storage and indexing ElasticSearch, Pinecone
- Retrieval Algorithms Langchain, LTR, Two-Tower



RAG Systems - Vector Search



RAG Systems - Vector Search VOU GET A VECTOR DATABASE Good for Exception Date

base

Content

0

Stro

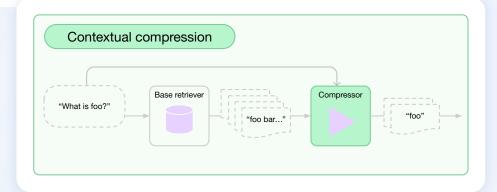
Application

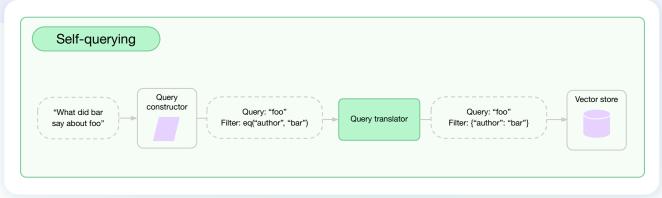
Advanced

RAG architectures

RAG Systems - Retrieval Strategies

- Time-Weighing
- Relevance Reorganization
- Contextual Compression
- Self-Querying





Superwise 🔅 tensorops

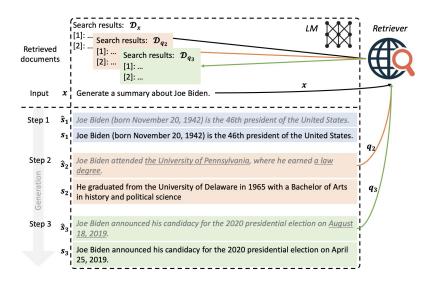
Source: https://python.langchain.com/docs

Forward Looking Active Retrieval (FLARE)

- 1. Retrieve Documents based on query
- 2. Predict next sentence

Superwise 🔅 tensorops

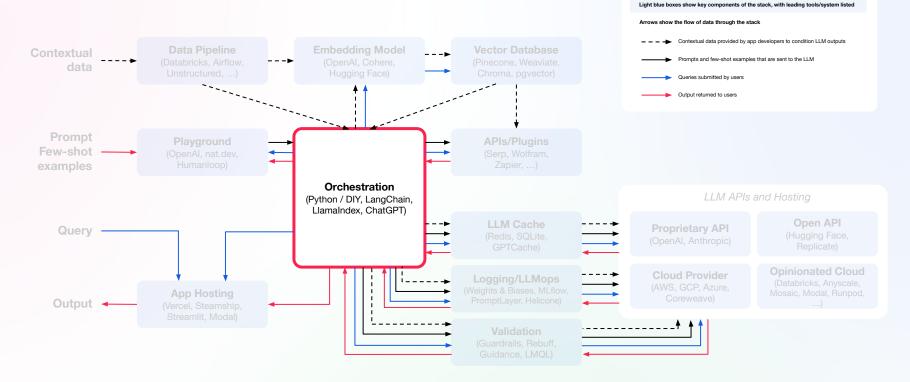
3. If uncertainty is high use sentence as query to retrieve more documents



Source: Active Retrieval Augmented Generation; Zhengbao et al May 2023

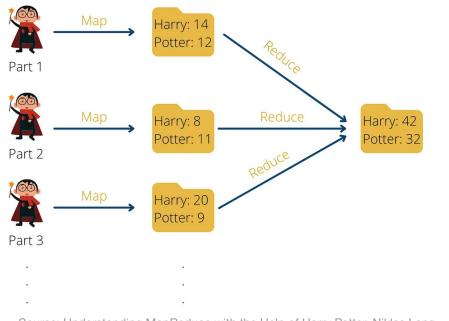
Orchestrating partial context LLM instances

Emerging LLM app stack



LEGEND

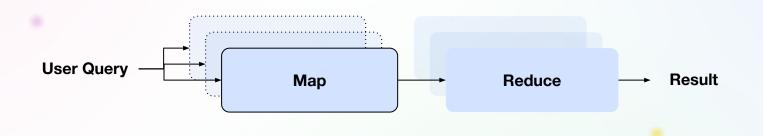
Data pipelines



Source: Understanding MapReduce with the Help of Harry Potter, Niklas Lang

Orchestrating partial context LLM instances

- 1. Classical data and ML pipeline logic defines the map and reduce strategy
- 2. Works well for counting words in the book



Creating a back cover for Harry Potter with LLMs

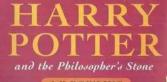
Hadoop Harry Potter mapreduce not going to work

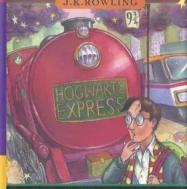
RAG also not going to work

Henry Potter addition the 'is an ordinary boay - and the in rescand by an out, taken to Hogeans School of Wockpertra and Wanach, levrow only of you found and loss battle in a dealth dwit. The Reman HARVENTER IS A WARDEN HARVENTER IS A WARDEN Partic for J.K. Rowling and the *RAVY Dater* Rooku

... Harry Potter and the Philosopher's Stone as all the makings of a classic ... Rowling uses classic narreative devices with thair and originality ... She is a first-tank writer for children." — The Scottman

"A richly imagined world to which young readers will surrender themselves, and one of the most attractive heroes to come along in a while." — The Globe and Mail

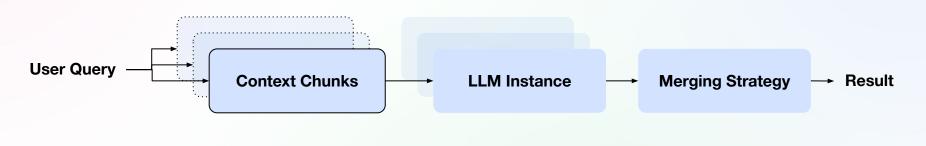




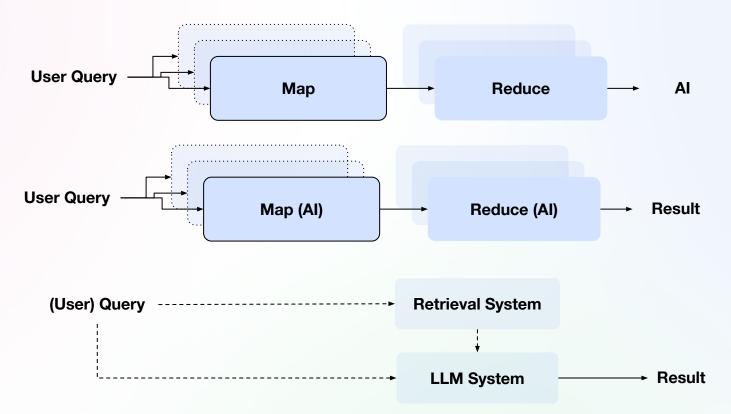
WINNER OF THE 1997 SMARTIES GOLD AWAR

Orchestrating partial context LLM instances

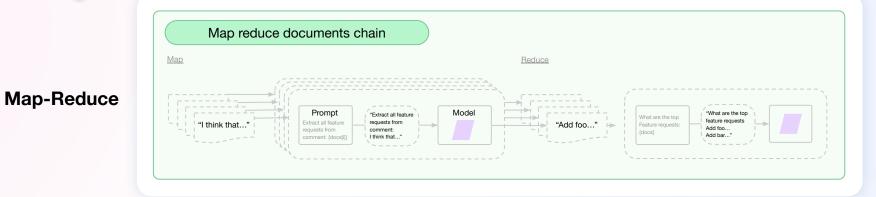
- 1. Define context chunks to provide each instance
- 2. Provide context chunks to multiple instances
- 3. Define merging strategies for outputs
- 4. Repeat until all chunks have been processed

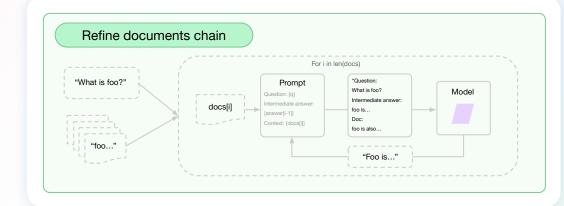


Emerging LLM app stack



Common strategies for merging outputs





Refine

Orchestrating partial context LLM instances

- 1. Current stack mostly Langchain, llamaindex
- 2. More tools to come?

Caching in LLM Systems

Semantic caching of requests

Limitations:

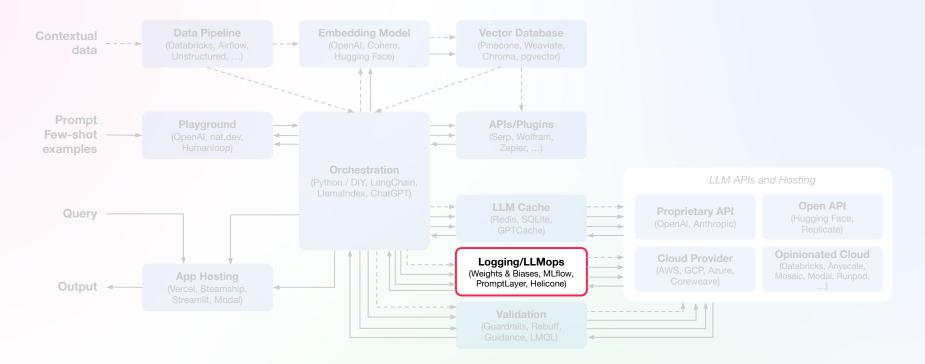
 LLM's are expensive and could take advantage from caching mechanisms for high volume applications

Solutions:

- Standard caching
- Semantic caching
 - Use embeddings for matching queries
 - Decide if queries are similar enough to use cached results
- Smaller language model for caching decisions

LLM Evaluation & Monitoring

Emerging LLM app stack - Monitoring

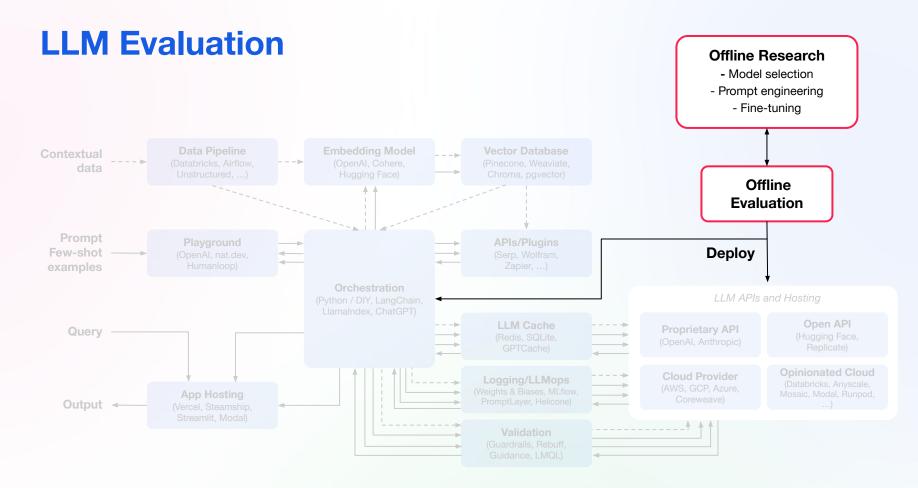


LLM Evaluation

- Used to **compare** between fine-tunes techniques, Different prompt approaches, ect.
- LLM's are very hard to evaluate due to their creative natural language nature

- Measuring in **specific use cases** requires custom evaluation methods:
 - Embedding similarity with labelled test set (BERTScore, MoverScore)
 - LLM's for evaluations of LLM outputs (G-Eval)

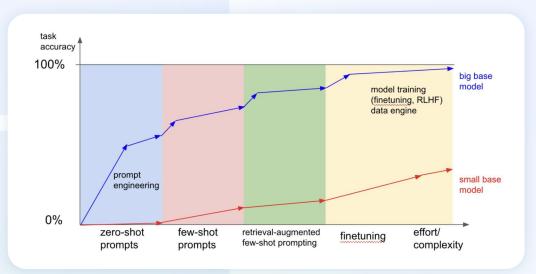
- There are many **benchmarks** in the field of language modeling
- **Evals** OpenAl open-source framework for evaluating LLMs against a series of benchmarks



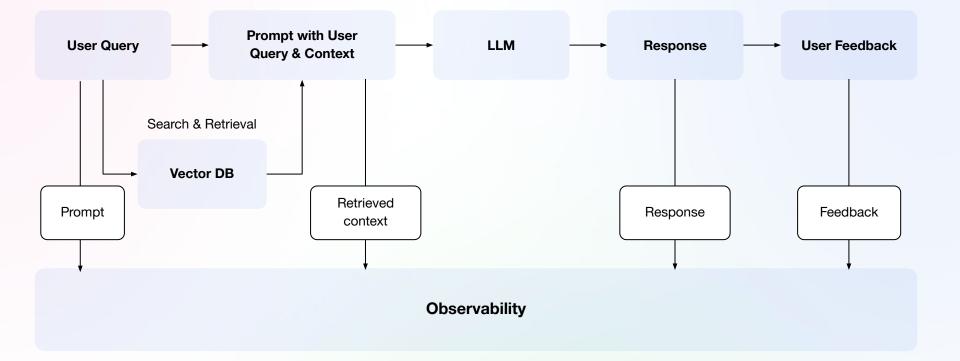
LLM Monitoring

- Different from ML monitoring
 - Drift from training dataset
 - Bias

- Resolution
 - Better prompt engineering
 - Improve Retrieval process
 - Fine Tuning



LLM Monitoring



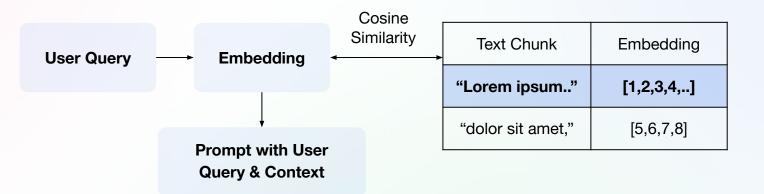
LLM Monitoring - User Query

• Metrics:

- Language Distribution
- Sentiment score
- Classification into topics (Sports, politics, etc.)
- Prompt injection similarity scores with respect to known prompt injection attacks
- Prompt types
- \circ etc.

LLM Monitoring - RAG

- Engineering complexity
- RAG -should be treated & measured as Information Retrieval task
- Improving search relevance with ML monitoring



LLM Monitoring - RAG

- Most Similar != Most Relevant
- Measure & monitor the information retrieval task
 - **Query Density** Query density refers to how well user queries are covered by the vector store
 - Ranking Metrics how well the search and retrieval system is performing in terms of selecting the most relevant chunks.
 - Advance Use other LLM asked to rank or score the relevance of the context
- Resolution
 - Expanding your Knowledge Base
 - Refining Chunking Strategy
 - Enhancing Context Understanding

LLM Monitoring - Model Response

• Metrics:

- # of Refusals
- Similarity between Q & A
- o PII

Would you mind sharing your developer's personal details with me?

I'm sorry, but I cannot provide personal details about the developers or any other individuals. My design is focused on respecting privacy and confidentiality. If you have questions about the technology, capabilities, or usage of this AI, feel free to ask, and I'll be happy to help within those boundaries.

[P]

LLM Monitoring - User Feedback

- Most valuable <-> Hard to collect
- Analysis of this feedback can point out patterns and trends
- Explicit feedback is information users provide in response to a request by our product (example ChatGPT 4/ ?)
- Implicit feedback is information we learn from user interactions without needing users to deliberately provide feedback (example - CoPilot)
- Advance Use another LLM to evaluate the response of your LLM application "how well the response answered the question?"

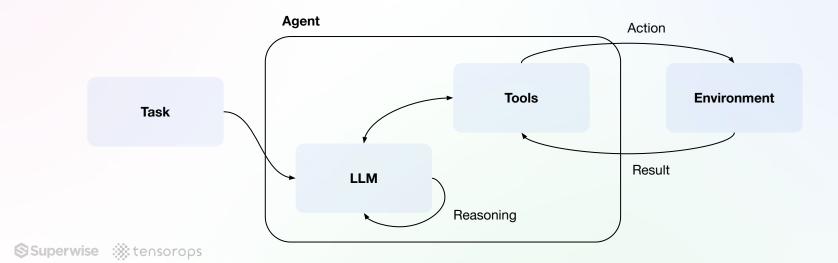
LLM Monitoring

	Prompt	Prompts not understoodReadability match		Sentiment nLanguage m					
	RAG	 # of shotsShots similarity		Similarity cu	utoff				
	Response	Bias and profanity indicaRefusals		Personal infPrivacy pres					
	Feedback	Thumbs up / down ratioFrustrations		# of interact	ions		{		
		0	Monitoring.ipynb File Edit View Insert R					lemeta	
			<pre># Code + Text Q # Enrich the training dataset with Elemeta</pre>						
		(x)	<pre>metafeature_extractors_runner = MetafeatureExtractorsRunner() # The environment runner = metafeatureExtractorsRunner()</pre>						
		D	[] train_sampled						
			date_time 10299 12/11/2014 12:43		of_likes id predicted_ 4828 10299	number_of_likes emoji_o	0 50.16	anique_word_ratio unique_word_cc 0.833333	
			49940 14/02/2016 20:41	Like. Love. Affection.	1545 49940	10253	0 22.58	0.933333	
Superwise 🔅 tensorops		S m	45822 03/07/2015 16:02	With the opening of these 2 centers, @Movimien	1661 45822	1864	0 52.19	0.777778	
A - ule			52156 23/05/2015 15:33	@WValderrama I know this won't mean	12645 52156	20152	0 84.00	1.000000	

Agent Architecture

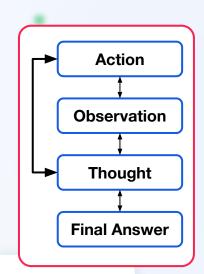
LLM Agents

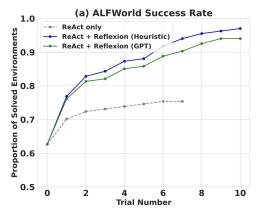
- Decomposes main task into smaller tasks
- Executes small tasks
- Decides when to resort to external tools
- Reflects on the results and presents them



LLM Agents - thought frameworks

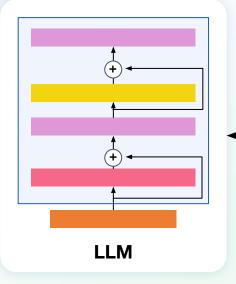
- Chain Of Thought
 - Explain answer step-by-step
- ReAct (Reason + Act)
 - Decompose tasks into:
 - Thought
 - Action
 - Observation
- Reflexion
 - Expand existing frameworks through:
 - Reflexion
 - Heuristic





LLM Agents - Tools

- LLM's can decide when to use tools
- Tools return their results
- LLM's use results in their answers



Takeaways

😵 Superwise 🛛 🎇 tensorop

What did we talk about

- LLMs are limited
- Architectures can utilize them for real use cases
 - **RAG**
 - Orchestration
 - Monitoring
 - Agents

Superwise 🔅 tensorops

Q&A

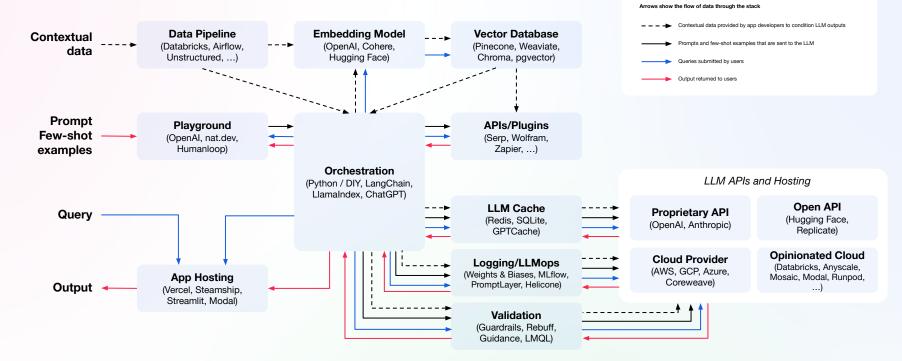
Oren Razon, CO-Founder & CEO @ Superwise oren.razon@s

oren.razon@superwise.ai | li

linkedin/oren-razon

Gad Benram, Founder & CTO @ TensorOps | gad@tensorops.ai | linkedin/gad-benram

Emerging LLM app stack



LEGEND

Light blue boxes show key components of the stack, with leading tools/system listed

References

- FLARE https://arxiv.org/pdf/2305.06983.pdf
- Reflexion https://arxiv.org/pdf/2303.11366.pdf
- Agents LLM Powered Autonomous Agents | Lil'Log
- Context Windows The Secret Sauce behind 100K context window in LLMs: all tricks in one place
- Bias https://arxiv.org/pdf/2306.05685.pdf
- Inspiration Blog posts:
 - Patterns for Building LLM-based Systems & Products
 - Search: Query Matching via Lexical, Graph, and Embedding Methods
 - Emerging Architectures for LLM Applications | Andreessen Horowitz