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Model observability
 built for scale

We empower data science, ML engineering, and 

operational teams with visibility and control to 

scale AI activities

We build end-to-end AI solutions for businesses; 

Specializing in LLMs, time series forecasting and 

search.

Your AI Partners
 We simply help machines learn



Agenda
● Limitations of LLM's

● Limitations as engineering challenges

● Building blocks of LLM systems

● LLM evaluation

● LLM monitoring



Reference

This talk is inspired by this great article by a16z.

This is not a review (after all you can read it on your own ☺ )

Let’s discuss some of the design patterns that we have observed in our 

experience with LLMs.



Many of the architectures that you will see today are

“ways to get around the limitations of LLMs”

LLMs will take your job first 
and destroy humanity

Maybe.

But for now let’s focus on practical implementations of LLM Applications



Engineering around

the limitations



Limitations of 
off-the-shelf 

LLM's

● Only know what they were trained on

● Context size is limited

● Bad scaling with increasing context

● Limited to text perception

● Hard to evaluate results

● Expensive for high volumes of data



What LLM use 
case are you 
developing?



Retrieval Augmented

Generation



Lack of knowledge



● LLM's are unaware of concepts outside of their training set

● Filling gaps in knowledge with assumptions

● Very hard to teach LLM's about new concepts

Context Limitations of LLM's - Lack of Knowledge



Prompt: "Gabriel is an 
AI researcher…"

Lack of knowledge

Gabriel_CV.pdf

www.twitter.com/gabriel_goncalves



Retrieval System(User) Query

LLM System Result

● Adding context to LLM's by integrating retrieval systems

● Retrieval systems provide short but informative context to LLM's

Retrieval Augmented Generation - (RAG)



Use-cases:
● Knowledge Base question answering

○ Library documentation
○ Technical documents
○ Code

● Technical Summarization

Embedding Model
(OpenAI, Cohere,

Hugging Face)

Vector Database
(Pinecone, Weaviate, Chroma, 

pgvector)
User Query

LLM System Result

Retrieval Augmented Generation



Data Pipeline
(Databricks, Airflow, 

Unstructured, …)

Embedding Model
(OpenAI, Cohere,

Hugging Face)

Vector Database
(Pinecone, Weaviate, 
Chroma, pgvector)

Playground
(OpenAI, nat.dev, 

Humanloop)

APIs/Plugins
(Serp, Wolfram,

Zapier, …)

Orchestration
(Python / DIY, LangChain,

LlamaIndex, ChatGPT)

LLM Cache
(Redis, SQLite, 

GPTCache)

Logging/LLMops
(Weights & Biases, MLflow, 

PromptLayer, Helicone)

Validation
(Guardrails, Rebuff,
Guidance, LMQL)

App Hosting
(Vercel, Steamship,
Streamlit, Modal)

Contextual
data

Prompt
Few-shot
examples

Query

Output

LLM APIs and Hosting

Proprietary API
(OpenAI, Anthropic)

Cloud Provider
(AWS, GCP, Azure, 

Coreweave)

Open API
(Hugging Face, 

Replicate)

Opinionated Cloud
(Databricks, Anyscale, 

Mosaic, Modal, Runpod, 
…)

Emerging LLM app stack 
LEGEND

Light blue boxes show key components of the stack, with leading tools/system listed

Arrows show the flow of data through the stack

Contextual data provided by app developers to condition LLM outputs

Prompts and few-shot examples that are sent to the LLM

Queries submitted by users

Output returned to users
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Context Limitations of LLM's - Performance Scaling

● Performance scales inversely with prompt size

● Happens across many LLM architectures

Model Context Window (tokens)

GPT-4 8-32K

Claude-1 100K

GPT-3.5 4-16k
Source: “Lost in the Middle: How Language Models Use Long Contexts”, F. Liu et al. 2023.



Context Limitations of LLM's - Bias

● Bias towards first option when choosing things

● Recency bias for most tasks

Source: “Judging LLM-as-a-judge with MT-Bench and Chatbot Arena”, Lianmin Zheng  et al. 2023.



RAG Systems - more components

● Loaders and parsers

● Document preprocessing

● Document storage and indexing

● Retrieval Algorithms 

Knowledge 
Source

Application LLM

3. Return Relevant 
Documents

2. Search Relevant 
Documents for the Query

1. Input: Query

4. Prompt + Relevant 
Documents + Query



RAG Systems - more components

Knowledge 
Source

Application LLM

3. Return Relevant 
Documents

2. Search Relevant 
Documents for the Query

1. Input: Query

4. Prompt + Relevant 
Documents + Query

● Loaders and parsers - Unstructured, Airflow, Databricks

● Document preprocessing - Airflow, Databricks

● Document storage and indexing - ElasticSearch, Pinecone

● Retrieval Algorithms - Langchain, LTR, Two-Tower



RAG Systems - Vector Search

● Good for similarity matching
● Exceptions in its applicability

○ Date sensitivity
○ Strong lexical matching

Content

Application     

Embedding 
Model

Vector Embedding
[0.34, -1.2, 0.34, 1.3, … , -0.03, 1.14]

Vector Database

Query

Query Result
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Advanced

RAG architectures



RAG Systems - Retrieval Strategies

Source: https://python.langchain.com/docs

● Time-Weighing

● Relevance Reorganization

● Contextual Compression

● Self-Querying

Contextual compression

“What is foo?”
Base retriever Compressor

“foo bar…” “foo”

Self-querying

“What did bar 
say about foo”

Query 
constructor

Query translator
Query: “foo”

Filter: eq(“author”, “bar”)
Query: “foo”

Filter: {“author”: “bar”}

Vector store



1. Retrieve Documents based on query

2. Predict next sentence

3. If uncertainty is high use sentence      
as query to retrieve more documents

Forward Looking Active Retrieval (FLARE)

Source: Active Retrieval Augmented Generation; Zhengbao et al May 2023



Orchestrating partial context

LLM instances
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Emerging LLM app stack



Data pipelines

Source: Understanding MapReduce with the Help of Harry Potter, Niklas Lang



Orchestrating partial context LLM instances

User Query
ResultReduceMap

1. Classical data and ML pipeline - logic defines the map and reduce strategy

2. Works well for counting words in the book



Hadoop Harry Potter mapreduce 
not going to work

RAG also not going to work

Creating a back cover for 
Harry Potter with LLMs



Orchestrating partial context LLM instances

User Query
ResultLLM InstanceContext Chunks Merging Strategy

1. Define context chunks to provide each instance

2. Provide context chunks to multiple instances

3. Define merging strategies for outputs

4. Repeat until all chunks have been processed



Emerging LLM app stack 

User Query
AIReduceMap

User Query
ResultReduce (AI)Map (AI)

Retrieval System(User) Query

LLM System Result



Common strategies for merging outputs

Map reduce documents chain

Map

“I think that…” “Add foo…”
Prompt

Extract all feature 
requests from 
comment: {docs[i]}

“Extract all feature 
requests from 
comment:
I think that…”

Model

Reduce

What are the top
Feature requests:
{docs}

“What are the top 
feature requests
Add foo…
Add bar…”

Map-Reduce

Refine

Refine documents chain

“foo…”

“What is foo?”

docs[i]

Prompt
Question: {q}

Intermediate answer:

{answer[i-1]}

Context: {docs[i]}

“Question:

What is foo?

Intermediate answer: 

foo is…

Doc:

foo is also…

Model

“Foo is…”

For i in len(docs)



Orchestrating partial context LLM instances

1. Current stack mostly Langchain, llamaindex

2. More tools to come?

User Query
ResultLLM InstanceContext Chunks Merging Strategy



Caching in LLM Systems



Semantic caching of requests

Limitations:
● LLM's are expensive and could take advantage from caching mechanisms for 

high volume applications

Solutions:
● Standard caching
● Semantic caching

○ Use embeddings for matching queries
○ Decide if queries are similar enough to use cached results

● Smaller language model for caching decisions



LLM Evaluation & Monitoring
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LLM Cache
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PromptLayer, Helicone)

Validation
(Guardrails, Rebuff,
Guidance, LMQL)

App Hosting
(Vercel, Steamship,
Streamlit, Modal)

Contextual
data

Prompt
Few-shot
examples

Query

Output

LLM APIs and Hosting

Proprietary API
(OpenAI, Anthropic)

Cloud Provider
(AWS, GCP, Azure, 

Coreweave)

Open API
(Hugging Face, 

Replicate)

Opinionated Cloud
(Databricks, Anyscale, 

Mosaic, Modal, Runpod, 
…)

Emerging LLM app stack - Monitoring 



LLM Evaluation

● Used to compare between fine-tunes techniques, Different prompt approaches, ect.

● LLM's are very hard to evaluate due to their creative natural language nature

● There are many benchmarks in the field of language modeling

● Evals - OpenAI open-source framework for evaluating LLMs against a series of benchmarks

● Measuring in specific use cases requires custom evaluation methods:

○ Embedding similarity with labelled test set (BERTScore, MoverScore)

○ LLM's for evaluations of LLM outputs (G-Eval) 
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Offline Research
- Model selection

- Prompt engineering
- Fine-tuning

 Offline 
Evaluation

Deploy

LLM Evaluation



LLM Monitoring

● Different from ML monitoring

○ Drift from training dataset

○ Bias

● Resolution

○ Better prompt engineering 

○ Improve Retrieval process 

○ Fine Tuning 



User Query
Prompt with User
Query & Context LLM Response User Feedback

Vector DB

Observability

Search & Retrieval

Retrieved 
context

Response Feedback

LLM Monitoring

Prompt



LLM Monitoring - User Query

● Metrics:

○ Language Distribution

○ Sentiment score

○ Classification into topics (Sports, politics, etc.)

○ Prompt injection - similarity scores with respect to known prompt injection attacks

○ Prompt types

○ etc.



● Engineering complexity   

● RAG -should be treated & measured as Information Retrieval task

● Improving search relevance with ML monitoring

Text Chunk Embedding

“Lorem ipsum..” [1,2,3,4,..]

“dolor sit amet,” [5,6,7,8]

User Query Embedding

Prompt with User
Query & Context

LLM Monitoring - RAG

Cosine 
Similarity

https://www.youtube.com/watch?v=hdOsYI5yfmY&ab_channel=Superwise


● Most Similar != Most Relevant

● Measure & monitor the information retrieval task

○ Query Density - Query density refers to how well user queries are covered by the vector store

○ Ranking Metrics - how well the search and retrieval system is performing in terms of selecting 

the most relevant chunks. 

○ Advance - Use other LLM - asked to rank or score the relevance of the context

● Resolution

○ Expanding your Knowledge Base

○ Refining Chunking Strategy

○ Enhancing Context Understanding

LLM Monitoring - RAG



LLM Monitoring - Model Response

● Metrics:

○ # of Refusals

○ Similarity between Q & A

○ PII



● Most valuable <-> Hard to collect

● Analysis of this feedback can point out patterns and trends

● Explicit feedback is information users provide in response to a request by our product 

(example ChatGPT 👍/ 👎)

● Implicit feedback is information we learn from user interactions without needing users to 

deliberately provide feedback (example - CoPilot)

● Advance - Use another LLM to evaluate the response of your LLM application - ״how well the 

response answered the question?״

LLM Monitoring - User Feedback



LLM Monitoring

Prompt ● Sentiment match
● Language match

● Prompts not understood
● Readability match

RAG ● Similarity cutoff
● ...

● # of shots
● Shots similarity 

Response ● Personal information
● Privacy preservation

● Bias and profanity indicators
● Refusals

Feedback ● # of interactions
● …

● Thumbs up / down ratio
● Frustrations



Agent Architecture



LLM Agents

● Decomposes main task into smaller tasks

● Executes small tasks

● Decides when to resort to external tools

● Reflects on the results and presents them

Task

LLM

Tools Environment

Agent Action

Result

Reasoning



LLM Agents - thought frameworks

● Chain Of Thought
○ Explain answer step-by-step

● ReAct (Reason + Act)
○ Decompose tasks into:

■ Thought
■ Action 
■ Observation

● Reflexion
○ Expand existing frameworks through:

■ Reflexion
■ Heuristic

Action

Observation

Thought

Final Answer



LLM Agents - Tools

● LLM's can decide when to use tools

● Tools return their results

● LLM's use results in their answers

+

+

LLM Tools



Takeaways



What did we talk 
about

● LLMs are limited

● Architectures can utilize them for real 

use cases

○ RAG

○ Orchestration

○ Monitoring

○ Agents
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FLARE - https://arxiv.org/pdf/2305.06983.pdf

Reflexion - https://arxiv.org/pdf/2303.11366.pdf

Agents - LLM Powered Autonomous Agents | Lil'Log

Context Windows - The Secret Sauce behind 100K context window in LLMs: all tricks in one place

Bias - https://arxiv.org/pdf/2306.05685.pdf 

Inspiration Blog posts:

- Patterns for Building LLM-based Systems & Products

- Search: Query Matching via Lexical, Graph, and Embedding Methods

- Emerging Architectures for LLM Applications | Andreessen Horowitz 
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