
Engineering around limitations

Or Itzary, CTO @Superwise | or.itzary@superwise.ai | linkedin/or-itzary

Gad Benram, Founder & CTO @TensorOps | gad@tensorops.ai | linkedin/gad-benram

Emerging architectures for LLM
applications

About us

Gad Benram

Founder & CTO @TensorOps

Or Itzary

CTO @Superwise

Gabriel Gonçalves

Solution architect @TensorOps

Model observability
 built for scale

We empower data science, ML engineering, and

operational teams with visibility and control to

scale AI activities

We build end-to-end AI solutions for businesses;

Specializing in LLMs, time series forecasting and

search.

Your AI Partners
 We simply help machines learn

Agenda
● Limitations of LLM's

● Limitations as engineering challenges

● Building blocks of LLM systems

● LLM evaluation

● LLM monitoring

Reference

This talk is inspired by this great article by a16z.

This is not a review (after all you can read it on your own ☺)

Let’s discuss some of the design patterns that we have observed in our

experience with LLMs.

Many of the architectures that you will see today are

“ways to get around the limitations of LLMs”

LLMs will take your job first
and destroy humanity

Maybe.

But for now let’s focus on practical implementations of LLM Applications

Engineering around

the limitations

Limitations of
off-the-shelf

LLM's

● Only know what they were trained on

● Context size is limited

● Bad scaling with increasing context

● Limited to text perception

● Hard to evaluate results

● Expensive for high volumes of data

What LLM use
case are you
developing?

Retrieval Augmented

Generation

Lack of knowledge

● LLM's are unaware of concepts outside of their training set

● Filling gaps in knowledge with assumptions

● Very hard to teach LLM's about new concepts

Context Limitations of LLM's - Lack of Knowledge

Prompt: "Gabriel is an
AI researcher…"

Lack of knowledge

Gabriel_CV.pdf

www.twitter.com/gabriel_goncalves

Retrieval System(User) Query

LLM System Result

● Adding context to LLM's by integrating retrieval systems

● Retrieval systems provide short but informative context to LLM's

Retrieval Augmented Generation - (RAG)

Use-cases:
● Knowledge Base question answering

○ Library documentation
○ Technical documents
○ Code

● Technical Summarization

Embedding Model
(OpenAI, Cohere,

Hugging Face)

Vector Database
(Pinecone, Weaviate, Chroma,

pgvector)
User Query

LLM System Result

Retrieval Augmented Generation

Data Pipeline
(Databricks, Airflow,

Unstructured, …)

Embedding Model
(OpenAI, Cohere,

Hugging Face)

Vector Database
(Pinecone, Weaviate,
Chroma, pgvector)

Playground
(OpenAI, nat.dev,

Humanloop)

APIs/Plugins
(Serp, Wolfram,

Zapier, …)

Orchestration
(Python / DIY, LangChain,

LlamaIndex, ChatGPT)

LLM Cache
(Redis, SQLite,

GPTCache)

Logging/LLMops
(Weights & Biases, MLflow,

PromptLayer, Helicone)

Validation
(Guardrails, Rebuff,
Guidance, LMQL)

App Hosting
(Vercel, Steamship,
Streamlit, Modal)

Contextual
data

Prompt
Few-shot
examples

Query

Output

LLM APIs and Hosting

Proprietary API
(OpenAI, Anthropic)

Cloud Provider
(AWS, GCP, Azure,

Coreweave)

Open API
(Hugging Face,

Replicate)

Opinionated Cloud
(Databricks, Anyscale,

Mosaic, Modal, Runpod,
…)

Emerging LLM app stack
LEGEND

Light blue boxes show key components of the stack, with leading tools/system listed

Arrows show the flow of data through the stack

Contextual data provided by app developers to condition LLM outputs

Prompts and few-shot examples that are sent to the LLM

Queries submitted by users

Output returned to users

Data Pipeline
(Databricks, Airflow,

Unstructured, …)

Embedding Model
(OpenAI, Cohere,

Hugging Face)

Vector Database
(Pinecone, Weaviate,
Chroma, pgvector)

Playground
(OpenAI, nat.dev,

Humanloop)

APIs/Plugins
(Serp, Wolfram,

Zapier, …)

Orchestration
(Python / DIY, LangChain,

LlamaIndex, ChatGPT)

LLM Cache
(Redis, SQLite,

GPTCache)

Logging/LLMops
(Weights & Biases, MLflow,

PromptLayer, Helicone)

Validation
(Guardrails, Rebuff,
Guidance, LMQL)

App Hosting
(Vercel, Steamship,
Streamlit, Modal)

Contextual
data

Prompt
Few-shot
examples

Query

Output

LLM APIs and Hosting

Proprietary API
(OpenAI, Anthropic)

Cloud Provider
(AWS, GCP, Azure,

Coreweave)

Open API
(Hugging Face,

Replicate)

Opinionated Cloud
(Databricks, Anyscale,

Mosaic, Modal, Runpod,
…)

Emerging LLM app stack
LEGEND

Light blue boxes show key components of the stack, with leading tools/system listed

Arrows show the flow of data through the stack

Contextual data provided by app developers to condition LLM outputs

Prompts and few-shot examples that are sent to the LLM

Queries submitted by users

Output returned to users

Context Limitations of LLM's - Performance Scaling

● Performance scales inversely with prompt size

● Happens across many LLM architectures

Model Context Window (tokens)

GPT-4 8-32K

Claude-1 100K

GPT-3.5 4-16k
Source: “Lost in the Middle: How Language Models Use Long Contexts”, F. Liu et al. 2023.

Context Limitations of LLM's - Bias

● Bias towards first option when choosing things

● Recency bias for most tasks

Source: “Judging LLM-as-a-judge with MT-Bench and Chatbot Arena”, Lianmin Zheng et al. 2023.

RAG Systems - more components

● Loaders and parsers

● Document preprocessing

● Document storage and indexing

● Retrieval Algorithms

Knowledge
Source

Application LLM

3. Return Relevant
Documents

2. Search Relevant
Documents for the Query

1. Input: Query

4. Prompt + Relevant
Documents + Query

RAG Systems - more components

Knowledge
Source

Application LLM

3. Return Relevant
Documents

2. Search Relevant
Documents for the Query

1. Input: Query

4. Prompt + Relevant
Documents + Query

● Loaders and parsers - Unstructured, Airflow, Databricks

● Document preprocessing - Airflow, Databricks

● Document storage and indexing - ElasticSearch, Pinecone

● Retrieval Algorithms - Langchain, LTR, Two-Tower

RAG Systems - Vector Search

● Good for similarity matching
● Exceptions in its applicability

○ Date sensitivity
○ Strong lexical matching

Content

Application

Embedding
Model

Vector Embedding
[0.34, -1.2, 0.34, 1.3, … , -0.03, 1.14]

Vector Database

Query

Query Result

RAG Systems - Vector Search

● Good for similarity matching
● Exceptions in its applicability

○ Date sensitivity
○ Strong lexical matching

Content

Application

Embedding
Model

Vector Embedding
[0.34, -1.2, 0.34, 1.3, … , -0.03, 1.14]

Vector Database

Query

Query Result

Advanced

RAG architectures

RAG Systems - Retrieval Strategies

Source: https://python.langchain.com/docs

● Time-Weighing

● Relevance Reorganization

● Contextual Compression

● Self-Querying

Contextual compression

“What is foo?”
Base retriever Compressor

“foo bar…” “foo”

Self-querying

“What did bar
say about foo”

Query
constructor

Query translator
Query: “foo”

Filter: eq(“author”, “bar”)
Query: “foo”

Filter: {“author”: “bar”}

Vector store

1. Retrieve Documents based on query

2. Predict next sentence

3. If uncertainty is high use sentence
as query to retrieve more documents

Forward Looking Active Retrieval (FLARE)

Source: Active Retrieval Augmented Generation; Zhengbao et al May 2023

Orchestrating partial context

LLM instances

Data Pipeline
(Databricks, Airflow,

Unstructured, …)

Embedding Model
(OpenAI, Cohere,

Hugging Face)

Vector Database
(Pinecone, Weaviate,
Chroma, pgvector)

Playground
(OpenAI, nat.dev,

Humanloop)

APIs/Plugins
(Serp, Wolfram,

Zapier, …)

Orchestration
(Python / DIY, LangChain,

LlamaIndex, ChatGPT)

LLM Cache
(Redis, SQLite,

GPTCache)

Logging/LLMops
(Weights & Biases, MLflow,

PromptLayer, Helicone)

Validation
(Guardrails, Rebuff,
Guidance, LMQL)

App Hosting
(Vercel, Steamship,
Streamlit, Modal)

Contextual
data

Prompt
Few-shot
examples

Query

Output

LLM APIs and Hosting

Proprietary API
(OpenAI, Anthropic)

Cloud Provider
(AWS, GCP, Azure,

Coreweave)

Open API
(Hugging Face,

Replicate)

Opinionated Cloud
(Databricks, Anyscale,

Mosaic, Modal, Runpod,
…)

LEGEND

Light blue boxes show key components of the stack, with leading tools/system listed

Arrows show the flow of data through the stack

Contextual data provided by app developers to condition LLM outputs

Prompts and few-shot examples that are sent to the LLM

Queries submitted by users

Output returned to users

Emerging LLM app stack

Data pipelines

Source: Understanding MapReduce with the Help of Harry Potter, Niklas Lang

Orchestrating partial context LLM instances

User Query
ResultReduceMap

1. Classical data and ML pipeline - logic defines the map and reduce strategy

2. Works well for counting words in the book

Hadoop Harry Potter mapreduce
not going to work

RAG also not going to work

Creating a back cover for
Harry Potter with LLMs

Orchestrating partial context LLM instances

User Query
ResultLLM InstanceContext Chunks Merging Strategy

1. Define context chunks to provide each instance

2. Provide context chunks to multiple instances

3. Define merging strategies for outputs

4. Repeat until all chunks have been processed

Emerging LLM app stack

User Query
AIReduceMap

User Query
ResultReduce (AI)Map (AI)

Retrieval System(User) Query

LLM System Result

Common strategies for merging outputs

Map reduce documents chain

Map

“I think that…” “Add foo…”
Prompt

Extract all feature
requests from
comment: {docs[i]}

“Extract all feature
requests from
comment:
I think that…”

Model

Reduce

What are the top
Feature requests:
{docs}

“What are the top
feature requests
Add foo…
Add bar…”

Map-Reduce

Refine

Refine documents chain

“foo…”

“What is foo?”

docs[i]

Prompt
Question: {q}

Intermediate answer:

{answer[i-1]}

Context: {docs[i]}

“Question:

What is foo?

Intermediate answer:

foo is…

Doc:

foo is also…

Model

“Foo is…”

For i in len(docs)

Orchestrating partial context LLM instances

1. Current stack mostly Langchain, llamaindex

2. More tools to come?

User Query
ResultLLM InstanceContext Chunks Merging Strategy

Caching in LLM Systems

Semantic caching of requests

Limitations:
● LLM's are expensive and could take advantage from caching mechanisms for

high volume applications

Solutions:
● Standard caching
● Semantic caching

○ Use embeddings for matching queries
○ Decide if queries are similar enough to use cached results

● Smaller language model for caching decisions

LLM Evaluation & Monitoring

Data Pipeline
(Databricks, Airflow,

Unstructured, …)

Embedding Model
(OpenAI, Cohere,

Hugging Face)

Vector Database
(Pinecone, Weaviate,
Chroma, pgvector)

Playground
(OpenAI, nat.dev,

Humanloop)

APIs/Plugins
(Serp, Wolfram,

Zapier, …)

Orchestration
(Python / DIY, LangChain,

LlamaIndex, ChatGPT)

LLM Cache
(Redis, SQLite,

GPTCache)

Logging/LLMops
(Weights & Biases, MLflow,

PromptLayer, Helicone)

Validation
(Guardrails, Rebuff,
Guidance, LMQL)

App Hosting
(Vercel, Steamship,
Streamlit, Modal)

Contextual
data

Prompt
Few-shot
examples

Query

Output

LLM APIs and Hosting

Proprietary API
(OpenAI, Anthropic)

Cloud Provider
(AWS, GCP, Azure,

Coreweave)

Open API
(Hugging Face,

Replicate)

Opinionated Cloud
(Databricks, Anyscale,

Mosaic, Modal, Runpod,
…)

Emerging LLM app stack - Monitoring

LLM Evaluation

● Used to compare between fine-tunes techniques, Different prompt approaches, ect.

● LLM's are very hard to evaluate due to their creative natural language nature

● There are many benchmarks in the field of language modeling

● Evals - OpenAI open-source framework for evaluating LLMs against a series of benchmarks

● Measuring in specific use cases requires custom evaluation methods:

○ Embedding similarity with labelled test set (BERTScore, MoverScore)

○ LLM's for evaluations of LLM outputs (G-Eval)

Data Pipeline
(Databricks, Airflow,

Unstructured, …)

Embedding Model
(OpenAI, Cohere,

Hugging Face)

Vector Database
(Pinecone, Weaviate,
Chroma, pgvector)

Playground
(OpenAI, nat.dev,

Humanloop)

APIs/Plugins
(Serp, Wolfram,

Zapier, …)

Orchestration
(Python / DIY, LangChain,

LlamaIndex, ChatGPT)

LLM Cache
(Redis, SQLite,

GPTCache)

Logging/LLMops
(Weights & Biases, MLflow,

PromptLayer, Helicone)

Validation
(Guardrails, Rebuff,
Guidance, LMQL)

App Hosting
(Vercel, Steamship,
Streamlit, Modal)

Contextual
data

Prompt
Few-shot
examples

Query

Output

LLM APIs and Hosting

Proprietary API
(OpenAI, Anthropic)

Cloud Provider
(AWS, GCP, Azure,

Coreweave)

Open API
(Hugging Face,

Replicate)

Opinionated Cloud
(Databricks, Anyscale,

Mosaic, Modal, Runpod,
…)

Offline Research
- Model selection

- Prompt engineering
- Fine-tuning

 Offline
Evaluation

Deploy

LLM Evaluation

LLM Monitoring

● Different from ML monitoring

○ Drift from training dataset

○ Bias

● Resolution

○ Better prompt engineering

○ Improve Retrieval process

○ Fine Tuning

User Query
Prompt with User
Query & Context LLM Response User Feedback

Vector DB

Observability

Search & Retrieval

Retrieved
context

Response Feedback

LLM Monitoring

Prompt

LLM Monitoring - User Query

● Metrics:

○ Language Distribution

○ Sentiment score

○ Classification into topics (Sports, politics, etc.)

○ Prompt injection - similarity scores with respect to known prompt injection attacks

○ Prompt types

○ etc.

● Engineering complexity

● RAG -should be treated & measured as Information Retrieval task

● Improving search relevance with ML monitoring

Text Chunk Embedding

“Lorem ipsum..” [1,2,3,4,..]

“dolor sit amet,” [5,6,7,8]

User Query Embedding

Prompt with User
Query & Context

LLM Monitoring - RAG

Cosine
Similarity

https://www.youtube.com/watch?v=hdOsYI5yfmY&ab_channel=Superwise

● Most Similar != Most Relevant

● Measure & monitor the information retrieval task

○ Query Density - Query density refers to how well user queries are covered by the vector store

○ Ranking Metrics - how well the search and retrieval system is performing in terms of selecting

the most relevant chunks.

○ Advance - Use other LLM - asked to rank or score the relevance of the context

● Resolution

○ Expanding your Knowledge Base

○ Refining Chunking Strategy

○ Enhancing Context Understanding

LLM Monitoring - RAG

LLM Monitoring - Model Response

● Metrics:

○ # of Refusals

○ Similarity between Q & A

○ PII

● Most valuable <-> Hard to collect

● Analysis of this feedback can point out patterns and trends

● Explicit feedback is information users provide in response to a request by our product

(example ChatGPT 👍/ 👎)

● Implicit feedback is information we learn from user interactions without needing users to

deliberately provide feedback (example - CoPilot)

● Advance - Use another LLM to evaluate the response of your LLM application - ״how well the

response answered the question?״

LLM Monitoring - User Feedback

LLM Monitoring

Prompt ● Sentiment match
● Language match

● Prompts not understood
● Readability match

RAG ● Similarity cutoff
● ...

● # of shots
● Shots similarity

Response ● Personal information
● Privacy preservation

● Bias and profanity indicators
● Refusals

Feedback ● # of interactions
● …

● Thumbs up / down ratio
● Frustrations

Agent Architecture

LLM Agents

● Decomposes main task into smaller tasks

● Executes small tasks

● Decides when to resort to external tools

● Reflects on the results and presents them

Task

LLM

Tools Environment

Agent Action

Result

Reasoning

LLM Agents - thought frameworks

● Chain Of Thought
○ Explain answer step-by-step

● ReAct (Reason + Act)
○ Decompose tasks into:

■ Thought
■ Action
■ Observation

● Reflexion
○ Expand existing frameworks through:

■ Reflexion
■ Heuristic

Action

Observation

Thought

Final Answer

LLM Agents - Tools

● LLM's can decide when to use tools

● Tools return their results

● LLM's use results in their answers

+

+

LLM Tools

Takeaways

What did we talk
about

● LLMs are limited

● Architectures can utilize them for real

use cases

○ RAG

○ Orchestration

○ Monitoring

○ Agents

Q&A
Oren Razon, CO-Founder & CEO @ Superwise | oren.razon@superwise.ai | linkedin/oren-razon

Gad Benram, Founder & CTO @ TensorOps | gad@tensorops.ai | linkedin/gad-benram

Data Pipeline
(Databricks, Airflow,

Unstructured, …)

Embedding Model
(OpenAI, Cohere,

Hugging Face)

Vector Database
(Pinecone, Weaviate,
Chroma, pgvector)

Playground
(OpenAI, nat.dev,

Humanloop)

APIs/Plugins
(Serp, Wolfram,

Zapier, …)

Orchestration
(Python / DIY, LangChain,

LlamaIndex, ChatGPT)

LLM Cache
(Redis, SQLite,

GPTCache)

Logging/LLMops
(Weights & Biases, MLflow,

PromptLayer, Helicone)

Validation
(Guardrails, Rebuff,
Guidance, LMQL)

App Hosting
(Vercel, Steamship,
Streamlit, Modal)

Contextual
data

Prompt
Few-shot
examples

Query

Output

LLM APIs and Hosting

Proprietary API
(OpenAI, Anthropic)

Cloud Provider
(AWS, GCP, Azure,

Coreweave)

Open API
(Hugging Face,

Replicate)

Opinionated Cloud
(Databricks, Anyscale,

Mosaic, Modal, Runpod,
…)

Emerging LLM app stack
LEGEND

Light blue boxes show key components of the stack, with leading tools/system listed

Arrows show the flow of data through the stack

Contextual data provided by app developers to condition LLM outputs

Prompts and few-shot examples that are sent to the LLM

Queries submitted by users

Output returned to users

FLARE - https://arxiv.org/pdf/2305.06983.pdf

Reflexion - https://arxiv.org/pdf/2303.11366.pdf

Agents - LLM Powered Autonomous Agents | Lil'Log

Context Windows - The Secret Sauce behind 100K context window in LLMs: all tricks in one place

Bias - https://arxiv.org/pdf/2306.05685.pdf

Inspiration Blog posts:

- Patterns for Building LLM-based Systems & Products

- Search: Query Matching via Lexical, Graph, and Embedding Methods

- Emerging Architectures for LLM Applications | Andreessen Horowitz

References

https://arxiv.org/pdf/2305.06983.pdf
https://arxiv.org/pdf/2303.11366.pdf
https://lilianweng.github.io/posts/2023-06-23-agent/
https://blog.gopenai.com/how-to-speed-up-llms-and-use-100k-context-window-all-tricks-in-one-place-ffd40577b4c
https://arxiv.org/pdf/2306.05685.pdf
https://eugeneyan.com/writing/llm-patterns/
https://eugeneyan.com/writing/search-query-matching/#supervised-techniques-improves-modeling-of-our-desired-event
https://a16z.com/2023/06/20/emerging-architectures-for-llm-applications/

